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Solution 1

Let’s begin by defining G := π1(X,x).

(1) By our assumptions on X (pc, lpc, slsc), we can invoke the Galois correspondence ensuring
that it is sufficient to classify all conjugacy classes of subgroups in G (Thm 1.38). Thankfully,
the only subgroups of G are the following:

⟨0⟩ = {(0, 0)} , ⟨(1, 0)⟩ = {(0, 0), (1, 0)} ∼= Z/2 , ⟨(0, 1)⟩ = {(0, 0), (0, 1), (0, 2)} ∼= Z/3 , G

We will now take some time to prove this statement:

Proof. First, it hopefully goes without saying that the above four subsets are indeed subgroups.
Then by Lagrange’s Theorem, we know all nontrivial subgroups of G have order 2 or 3 (the only
nontrivial divisors of |G| = 6). To finish the classification proof, we can check by hand that
these are the only subgroups, or we can effortlessly invoke Sylow’s second theorem: all order
p subgroups of a given finite group are conjugate to each other when p is prime. Therefore,
all other nontrivial subgroups (which necessarily have order 2 or 3) are conjugate to one of
the two we have already found. However, G is abelian, so our subgroups are closed under
conjugation and thus, the only order 2 (or 3) group is ⟨(1, 0)⟩ (or ⟨(0, 1)⟩).

In the above proof, we saw that the four subgroups are closed under conjugation, so there are
four conjugacy classes of subgroups of G:

{⟨0⟩} , {⟨(1, 0)⟩} , {⟨(0, 1)⟩} , {G}

There are then four unique (up to iso) pc covering spaces of X which can all be obtained via
the Galois correspondence. To explicitly capture these spaces, we could begin by constructing
the universal cover as done in lecture and then quotienting to obtain the remaining covers. Of
course, we cannot do this explicitly without more knowledge of X, but we can say for certain
that the universal cover is the one corresponding to {⟨0⟩} and the cover corresponding to {G}
is the trivial one (X

idX−−→ X).

(2) Let G (H) be the covering space corresponding to the conjugacy class of the subgroup H ⊂
G (via the Galois correspondence) and degG (H) its degree. We know from lecture that
degG (H) = |G/H| = |G|/|H|. This was because each fiber is iso to G/H as a right G-set.
Then the computations are simple:

degG (⟨0⟩) = 6/1 = 6 , degG (⟨(1, 0)⟩) = 6/2 = 3 ,

degG (⟨(0, 1)⟩) = 6/3 = 2 , degG (G) = 6/6 = 1
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(3) Recall the following correspondence Deck(G (H)) ∼= NG(H)/H where

NG(H) = {g ∈ G | gHg−1 ⊂ H}

is the normalizer of H in G. As explained in Part (1), G being obviously abelian implies that
all subgroups are closed under conjugation and hence, NG(H) = G for all subgroups H. Note
that this is equivalent to stating that H is normal in G, so NG(H)/H = G/H is a well-defined
group. We conclude with the following calculations:

Deck(G (⟨0⟩)) ∼= G/⟨0⟩ = G

Deck(G (⟨(1, 0)⟩)) ∼= G/⟨(1, 0)⟩ ∼= Z/3
Deck(G (⟨(0, 1)⟩)) ∼= G/⟨(0, 1)⟩ ∼= Z/2

Deck(G (G)) ∼= G/G ∼= Z/1

The middle two calculations are the only nontrivial ones. They both follow from either direct
inspection, or the observation that |G/⟨(1, 0)⟩| = 3, |G/⟨(0, 1)⟩| = 2, and the fact that there is
a unique (up to iso) group of order p when p is prime.

Solution 2

Given an n-manifold M and an element m ∈ M , we have a some neighborhood U of m on which
we have a local chart χU : U → Rn. In particular, χU is a homeomorphism onto its image (which
is necessarily an open in Rn), so χU (U − {m}) = χU (U)− χU ({m}). Further, χU (U)− χU ({m}) is
open in Rn implying U − {m} is open in M , 1. Then also M − {m} = M ∩ (U − {m}) is open in
M . Setting A := M − {m} and B := U , we see that the interiors of A and B (which are simply A
and B) cover M . Therefore, we can invoke the Excision Theorem (Thm 2.20) and conclude that

Hk(B,A ∩B) ∼= Hk(M,A)

for all k. Replacing A and B with their definitions, we then see that the above is precisely stating

Hk(U,U − {m}) ∼= Hk(M,M − {m})

for all k. Then because χU is a homeomorphism and homology is invariant under such maps, we
also have the following:

Hk(U,U − {m}) ∼= Hk(χU (U), χU (U)− {χU (m)})

Because χU (U) is open in Rn and χU (m) ∈ χU (U), we can invoke the result in the proof of Thm
2.262 stating that for any open V ⊂ Rn and x ∈ V , we have

Hk(V, V − {x}) ∼=

{
Z , k = n

0 , o.w.

Thus, by transitivity of ∼=, we have the same result for Hk(M,M − {m}).

We can then conclude that an n1-manifold M1 and an n2-manifold M2 cannot be homeomorphic
if n1 ̸= n2. This is because, again, homology is invariant under homeomorphism, so such a homeo-
morphism, denoted ψ, would imply that Hk(M1,M1−{x}) ∼= Hk(M2,M2−{ψ(x)}) for all k, which
is a clear contradiction of the previous result.

1Perhaps more accurately, χU (U)− {χU (m)} is open in Rn implying that it is open in the subspace topology on
χU (U). From this, we have that U − {m} is open in the subspace topology on U , by χU a homeomorphism between
these topologies. Then, U − {m} will be open in M because the defining subspace, U , is open.

2For more details, see the remark below.
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Remark. To prove the intermediate result that I invoke from the proof of Thm 2.26, Hatcher
vaguely says that something is true by inspecting the long exact sequence on the pair (Rm,Rm−{x}).
The desired result is then immediately clear in all cases k > 1, but the last two cases require further
considerations. I did work through the full proof on a blackboard and can send a photo if you would
like.

Solution 3

First, let’s get three necessary lemmas out of the way. Once this is done, we will show that RP 2∨S2

is path connected (pc), locally path connected (lpc), and semi-locally simply connected (slsc). To
prove these lemmas it will be helpful to introduce some notation. Recall that X ∨ Y := X ⨿∼ Y
where ∼ identifies the wedge point wX ∈ X with that in Y ; the resulting point will be denoted
w := wX ∼ wY ∈ X ∨ Y . Further, let q : X ⨿ Y → X ∨ Y denote the projection (sending
wX 7→ w ← [ wY ). Finally, denote the inclusion ιZ : Z → X ⨿ Y for Z = X,Y .

Lemma 1 (Wedge pc). If X and Y are pc, then X ∨ Y is pc.

Proof. Suppose X,Y path connected and take any a, b ∈ X ∨ Y . If a, b ∈ im(qιX) ∼= X or a, b ∈
im(qιY ) ∼= Y then obviously we have a path from a to b pushed forward from a path in the respective
space X or Y . For the other case, assume a ∈ im(qιX) ∼= X and b ∈ im(qιY ) ∼= Y . Then we have
paths γa and γb from a and b to the wedge point w = im(qιX)∩ im(qιY ), respectively. Then γaγb is
a path from a to b.

Lemma 2 (Wedge lpc). If X and Y are lpc, then X ∨ Y is lpc.

Proof. To see this, consider some point z ∈ X ∨ Y and neighborhood U of z. U can be rewritten
as UX ⨿∼ UY ) and we will assume WLOG that UX ⨿ UY is a “good representative” of UX ⨿∼ UY

meaning UX⨿UY = q−1(UX⨿∼UY ). In particular, this means that if w ∈ UX⨿∼UY , then wX ∈ UX

and wY ∈ UY . We will first prove the result for the case when z = w.
(Case z=w) In this case, we have wX ∈ UX by our “good representative” assumption which

yields a pc open VX ⊂ UX such that wX ∈ V w
X and the analogous result for Y . Then z = w ∈

V w
X ⨿∼ V

w
Y ⊂ UX ⨿∼ UY . Further, by Lemma 1, we have that V w

X ⨿∼ V
w
Y = V w

X ∨ V w
Y is pc.

(General case) We can assume WLOG that z ∈ X. Then there is a pc open VX ⊂ UX with
z ∈ VX . Now, we will again break up into two cases:

(Case wX /∈ VX) If wX /∈ VX , then q−1(VX ⨿∼ ∅) = VX ⨿∅ which is open in X⨿Y and
thus, by definition of quotient topology, VX⨿∼∅ open in X∨Y . Further, VX⨿∼∅ ∼= VX
is obviously pc and we are done.

(Case wX ∈ VX) If wX ∈ VX , the previous proof doesn’t work because q−1(VX⨿∼ ∅) =
VX⨿{wY } which is not necessarily open in X⨿Y . To get around this, we can consider
VX ⨿∼ V w

Y where V w
Y is again a pc neighborhood of wY contained in UY . Then we

again invoke Lemma 1 to ensure that VX ⨿∼ V
w
Y = VX ∨ V w

Y is pc.

Lemma 3 (Wedge slsc). If X and Y are slsc, then X ∨ Y is slsc.

Proof. Omitted, but follows that same logic as that of the previous lemma.

Lemma 4 (Epi pc). If s : X → Y is a continuous surjection, then X pc implies Y pc.

Proof. We can take two points y, y′ ∈ Y and any x, x′ in s−1(y), s−1(y′), respectfully. We then have
a path γ from x′ to y′, by X path connected. Further, the composition sγ will be a continuous path
from sγ(0) = sx = y to sγ(1) = sx′ = y′.
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Lemma 5 (Epi lpc). If Y is endowed with the quotient topology coming from a surjection s : X → Y ,
then X lpc implies Y lpc.

Proof. Consider a neighborhood U of y ∈ Y and its pullback s−1(U) which is necessarily open in
X. By X lpc, we have we have a pc neighborhood V of x for some choice x ∈ s−1(y) satisfying
V ⊂ s−1(U). Then s(V ) ⊂ U is necessarily open in Y (by definition of quotient topology) and
y ∈ s(V ). Further, by Lemma 4, s(V ) is pc.

Lemma 6 (Epi slsc). If Y is endowed with the quotient topology coming from a surjection s : X →
Y , then X slsc implies Y pc.

Proof. Omitted, but follows the same logic as that of the previous lemma.

With these lemmas out of the way, we can now easily show that RP 2 ∨ S2 is path connected,
locally path connected, and semi-locally simply connected. For this, we will frequently use that RP 2

is endowed with the quotient topology from the defining projection π : S2 → RP 2 (by identifying
antipodal points). We know that S2 is pc, lpc, & slsc, so by Lemmas 4, 5, & 6 we have that RP 2

is pc, lpc, & slsc. Then we can invoke Lemmas 1, 2, & 3 and we have the desired result that the
S2 ∨ RP 2 is pc, lpc, & slsc.

With this result, we know that we can readily employ the Galois correspondence (Thm 1.38) to
assist us in finding all pc covers of S2∨RP 2. By the Corollary to Van Kampen’s Theorem discussed
in class, we have π1(∨iXi, x) ∼= ∗iπ1(Xi, x). Using this in our case, we get

π1(RP 2 ∨ S2, x) ∼= π1(RP 2, x) ∗ π1(S2, x) ∼= Z/2 ∗ {e} ∼= Z/2

The last equivalence holds because the free product between any group G and the trivial group is
obviously just G. Therefore, by the Galois correspondence, we have that the only unique (up to iso)
covering spaces of RP 2∨S2 are the two conjugacy classes of subgroups of Z/2, namely {0}, and Z/2
itself. The {0} conjugacy class will always correspond to the universal cover, and the whole group

Z/2 always corresponds to the trivial cover, in this case RP 2 ∨ S2 id−→ RP 2 ∨ S2. It remains to find
the universal cover. Because |(Z/2)/{0}| = 2, it is sufficient to find some degree two cover and this
will necessarily be the universal cover. Consider the degree two cover below (image will follow):

S2 ∨ S2 ∨ S2 p−→ RP 2 ∨ S2

To define p, suppose that the wedge S2 ∨ S2 ∨ S2 is stacked vertically meaning the north pole of
the left sphere is wedged to the south pole of the middle and the north pole of the middle sphere
is wedged to the south pole of the right sphere. We further assume without any loss of generality
that RP 2 ∨S2 is wedged similarly where the pseudo-north pole of RP 2 (the image of the north pole
under π) is wedged to the south pole of S2. Then p = pl∨pm∨pr where pm sends the middle copy of
S2 in the domain to the RP 2 in the codomain via π. This ensures that the two wedge points in the
domain get mapped to the one wedge point in the codomain. Then pr can act as identity between
the right copy of S2 in the domain and the copy of S2 in the codomain. Finally, pl maps the left
copy of S2 in the domain to the copy of S2 in the codomain, but it must agree with pm at the left
wedge point, so pl flips S

2 upside down sending the north pole to the south pole and vise-versa (we
call this map Rxy below). Pictorially, we have the following:
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This construction is pretty clearly a covering space and obviously of degree two. The only point
we need to check is at the wedge in the codomain. If we take an open neighborhood of this point
which is small enough, it will just look like two surfaces wedged at a point and it will indeed be
homeomorphic to the two disjoint opens in its preimage. We can then conclude that this is indeed
the universal cover.

Solution 4

Throughout this problem, let us denote e0 as the zero vertex in ∆n. Also before we begin, I will
present a theorem which is a combination of a theorem and its corollary presented in lecture:

Theorem 1. Consider the following data where p is some covering map (not necessarily universal).

(X̃, x̃)

(Y, y) (X,x)

p
f̃

f

If Y is path connected and locally path connected, then there is such a lift f̃ if and only if f∗(π1(Y, y)) ⊂
p∗(π1(X̃, x̃)).

All parts of this problem will follow relatively quickly from this theorem. When deferring to this
theorem, we will not explicitly check nor even mention that the relevant spaces are path connected
and locally path connected because all spaces discussed in this problem are.

(1) Consider some σ ∈ Map(∆n, X) and let x̃ ∈ p−1(σ(e0)). Because X̃ is the universal cover,

p∗(π1(X̃, x̃)) = p∗(cx̃) = cp(x̃) = cσ(e0). Further, ∆n has trivial fundamental group because
it is contractible and thus, σ∗(π1(∆

n, e0)) = cσ(e0). Therefore, by Theorem 1, there exists

σ̃ : (∆n, e0)→ (X̃, x̃) such that pσ̃ = σ. In fact, there are as many lifts of σ as there are choices

for x̃. In our case of the universal cover, there are |G| choices for x̃, so p∗ : Map(∆n, X̃) →
Map(∆n, X) is a degree |G| cover of its codomain (at least as a set-morphism).

(2) For this problem, we will use fg to denote the deck transformation associated to g ∈ G as we

did in lecture. Because X̃ is the universal cover, Deck(X̃) ∼= NG(e)/e = G/e ∼= G, so there is
an fg for all g.

Lemma 7. fe = idX̃

Proof. This is quite clear from the definition. fe is constructed, using Theorem 1, as the unique
map f : (X̃, x̃) → (X̃, ex̃) such that pf = p. Here x̃ ∈ p−1(x) is chosen arbitrarily. Because
ex̃ = x̃ we have that idX̃ satisfies this requirement and by uniqueness, we are done.
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Lemma 8. If fg(y) = y for some y ∈ X̃, then g = e.

Proof. Suppose fg(y) = y. Let’s begin with defining the pointed map p : (X̃, y) → (X, p(y)).

Because the fundamental group of X̃ is trivial, we have the condition necessary to invoke
Theorem 1 stating that there is a unique map f : (X̃, y)→ (X̃, y) such that pf = p. We know
that idX̃ is one such lift, so by uniqueness,

fg = f = idX̃ = fe

where the last equality holds by the previous lemma.

We can now swiftly prove the desired result:

(⇐= ) Suppose g = e. Then of course fgσ̃ = σ̃ because, by Lemma 7, fg = idX̃ .

( =⇒ ) Suppose fgσ̃ = σ̃. Then fg(σ̃(e0)) = σ̃(e0). Setting y := σ̃(e0) we can defer to Lemma
8 to conclude fg = fe.

(3) We know from lecture that the map f(−) : g 7→ fg gives us an isomorphism G ∼= Deck(X̃) when

X̃ is the universal cover3. Just as well, we could have constructed f(−) by choosing different

base points, say σ̃1(e0) ∈ X̃ and pσ̃1(e0) ∈ X. Then we get the map

f1(−) : π1(X, pσ̃1(e0))→ Deck(X̃)

by sending γ to the unique f : (X̃, σ̃1(e0)) → (X̃, γσ̃1(e0)) such that pf = p. Note that
σ̃1(e0), σ̃2(e0) ∈ p−1(σ(e0)) and because the fiber p−1(σ(e0)) is a transitive π1(X, pσ̃1(e0))-set,

there is some γ such that γσ̃1(e0) = σ̃2(e0). Therefore, f
1
γ ∈ Deck(X̃) is a map

(X̃, σ̃1(e0)) −→ (X̃, σ̃2(e0))

It remains to show that f1γ σ̃1 = σ̃2. For this, we will use the fact that f
1
γ is a covering map of X̃

which follows from it being a homeomorphism. Further, σ̃2∗(π1(∆
n), e0) ⊂ f1γ∗(π1(X̃, σ̃1(e0)))

because both fundamental groups are trivial and

f1γ∗(cσ̃1(e0)) = cf1
γ σ̃1(e0) = cσ̃2(e0) = σ̃2∗(ce0)

Then by Theorem 1, we have a unique δ fitting into the triangle below.

(X̃, σ̃1(e0))

(∆n, e0) (X̃, σ̃2(e0))

f1
γ

δ

σ̃2

We will now finish the proof by showing δ = σ̃1 which will follow from δ being a lift of σ
sending e0 7→ σ̃1(e0) and the uniqueness of such lifts given by Theorem 1. We know that
δ : e0 7→ σ̃1(e0), so to show that it is a lift of σ̃1, recall that f

1
γ being a deck transformation

ensures that pf1γ = p and observe the following calculation:

pδ = pf1γ δ = pσ̃2 = σ

Thus, δ = σ̃1 and we are done by commutativity of the previous diagram.

3because the subgroup corresponding X̃ is {e} and then NG(e) = G and NG(e)/e ∼= G
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Solution 5

It is necessary in this problem to assume A ∩B is nonempty, so we will make this assumption.

By Theorem 2.13 and the explanation below it that (X,A) is a “good pair” when A is a sub-
complex, we can consider the long exact sequence

· · · −→ H̃k(A) −→ H̃k(X) −→ H̃k(X/A) −→ H̃k−1(A) −→ · · · −→ H̃0(X/A) −→ 0

By A contractible, we have that H̃k(A) = 0 for all k. This gives a collection of exact subsequences

0 −→ H̃k(X) −→ H̃k(X/A) −→ 0

implying that H̃k(X) ∼= H̃k(X/A). Then Proposition 2.22 gives us an iso H̃k(X/A) ∼= Hk(X,A) for

all k and further, Corollary 2.24 yields Hk(X,A) ∼= Hk(B,A ∩ B). Thus, H̃k(X) ∼= Hk(B,A ∩ B).
Investigating this latter group, we can see that (B,A∩B) is again a “good pair” because we A∩B
is assumed to be nonempty, closedness of A ∩ B in B is inherited from that of A in X and the
deformation retract of Nε(A) onto A (described around Proposition A.5 of the appendix) restricts
to a deformation retract onto A ∩B in B. Therefore, imposing Proposition 2.22 once again gives

H̃k(X) ∼= Hk(B,A ∩B) ∼= H̃k(B/A ∩B)

We can then consider the long exact sequence

· · · −→ H̃k(A ∩B) −→ H̃k(B) −→ H̃k(B/A ∩B) −→ H̃k−1(A ∩B) −→ · · · −→ H̃0(B/A ∩B) −→ 0

Just as before, we have that B is contractible, so H̃k(B) = 0 for all k implying H̃k(B/A ∩ B) ∼=
H̃k−1(A∩B) for all k. Investigating the head of the long exact sequence above (0→ H̃0(B/A∩B)→
0), we see that this equality still holds in the case k = 0 by defining H̃−1(A ∩B) := 0. Putting this
together, we have

H̃k(X) ∼= H̃k(B/A ∩B) ∼= H̃k−1(A ∩B)

for all k. Then for all k > 0, we get the result

Hk(X) ∼= H̃k(X) ∼= H̃k−1(A ∩B)

There is still some subtlety at k = 0, because H0(X) ̸= H̃0(X). In this case, the equation won’t hold

given our convention that H̃−1(A ∩ B) := 0, but remember we set this convention so the reduced

equation H̃0(B/A ∩ B) ∼= H̃−1(A ∩ B) holds. Therefore, H0(X) = Z which can also be seen from
the beginning by the fact that X = A ∪B with A,B contractible and A ∩B nonempty.
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