
Category Theory Solution Set 5
Monte Mahlum

Solution 1

Suppose we have an adjunction, F : C ⇄ D : G, with unit η : idC ⇒ FG and counit ε : FG ⇒ idD. Then
we can, for any category J , define the functors F∗ : CJ ⇄ DJ : G∗ where F∗K := F ◦K for all functors
K : J → C (objects in CJ ) and F∗(ηj)j∈J := (Fηj)j∈J for all natural transformations η = (ηj)j∈J : K ⇒ K ′

(morphisms in CJ ). We use the analogous definition for G∗. Note that at times we will use FK for F∗K to
make it clear that we are talking about composition of functors.

Remark 1. F∗ (and thus, G∗) is indeed a functor CJ → DJ (or DJ → CJ for G∗).

Proof. The composition of two functors is again a functor, so F∗(K) is defined in DJ for all K ∈ CJ .
Further, for any natural transformation η : K ⇒ K ′ and f : i→ j in J , the diagram

FKi FK ′i

FKj FK ′j

FKf

Fηi

FK′f

Fηj

,

is simply the image of

Ki K ′i

Kj K ′j

Kf

ηi

K′f

ηj

⟲
,

under F , so by functoriality of F , it commutes and by f : i → j chosen arbitrarily, F∗(η) : FK ⇒ FK ′.
Now, consider idK : K ⇒ K which is simply the collection of all identity morphism (idK(j))j∈J . It is clear
that F∗idK = (F idK(j))j = (idFK(j))j = idFK by functoriality of F . Lastly, given

K
η⇒ L

ε⇒M ,

in CJ , we have
F∗(εη) = F∗((εjηj)j) = (F (εjηj))j = (FεjFηj)j = F∗εF∗η ,

by functoriality of F which completes the proof. Note that the same holds for G∗ by F, C chosen arbitrarily.

Lemma 1. Given a natural transformation α : A ⇒ B between any functors A,B : X → Y we have the
following natural transformation for any functor A′ :W → X :

αA′ := (αA′w)w : AA′ → BA′ .
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Proof. We know the diagram

Ax Bx

Ax′ Bx′

Af

αx

Bf

αx′

commutes for all f : x → x′ in X , so of course we have

commutativity of

AA′w BA′w

AA′w′ BA′w′

AA′g

αA′w

BA′g

αA′w′

for arbitrary g : w → w′ in W.

Observation 1. For all K ∈ CJ and L ∈ DJ , we have maps

ψKL : DJ (F∗K,L) −→ CJ (K,G∗L)

β 7−→ G∗(β)ηK := (G(βj)ηKj)j∈J ,

φKL : CJ (K,G∗L) −→ DJ (F∗K,L)

α 7−→ εLF∗(α) := (εLjF (αj))j∈J .

Proof. First we will show that ψKL is defined over all of DJ (F∗K,L), i.e, given α ∈ DJ (F∗K,L) we will show
that G(α)ηK is indeed in CJ (K,G∗L). By our investigation in Remark 1, we have that G∗(α) : GFK ⇒ G∗L
and by Lemma 1, we have ηK : K = idCK ⇒ GFK, therefore, the composition G∗(α)ηK is a natural
transformation K ⇒ GL. The same argument holds for the definedness of φKL, our previous results ensure
F∗(β) : FK ⇒ FGL and εL : FGL⇒ L, so the composition εLF∗(β) makes sense as a natural transformation
FK ⇒ L.

Observation 2. For all K and L, ψKL is an isomorphism of sets (or proper classes) with inverse φKL.

Proof. Consider arbitrary β ∈ DJ (F∗K,L). Then φKL(ψKL(β)) = (εLj(FGαj)FηKj)j∈J which is a natural
transformation FK ⇒ L. Visually, we have commutativity of the following for all j ∈ J :

FKj FGFKj FGLj Lj
FηKj

φKL(ψKL(β))j

FGβj εLj

Then by the first triangle-inequality, and naturality of ε, we have commutativity of

FKj FGFKj

FKj

FηKj

idFKj

εFKj , and

FGFKj FGLj Lj

FKj

FGβj

εFKj

εLj

βj
, (1)

respectfully. Putting this together gives commutativity of

FKj Lj

FKj
idFKj

φKL(ψKL(β))j

βj

.
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Similarly, given α ∈ CJ (K,G∗L), we have ψKL(φKL(α)) = (GεLj(GFαj)ηKj)j∈J . Fixing some j ∈ J we
can visualize this natural transformation as

Kj GFKj GFGLj GLj
ηKj

ψKL(φKL(α))j

GFαj GεLj

Then by naturality of η, and the second triangle-inequality, we have commutativity of

Kj GFKj GFGLj

GLj

ηKj

αj

GFαj

ηGLj , and

GFGLj GLj

GLj

GεLj

ηGLj
idGLj

, (2)

respectfully. Putting this together gives commutativity of

Kj GLj

GLj
αj

ψKL(φKL(α))j

idGLj

Proposition 1. The collection of isomorphisms ψ := (ψKL)KL is natural in both variables (K ∈ (CJ )op,
L ∈ DJ ), thus, it is a natural isomorphism DJ (F∗(−),−)⇒ CJ (−, G∗(−)).

Proof. To show naturality in the variable K, let us fix L ∈ DJ and a natural transformation (morphism)
α : K ⇒ K ′ in CJ . Observe that

DJ (F∗(−), L)(α) := F∗(α)
∗ :

(
β : FK ′ ⇒ L

)
7→

(
βF∗(α) : FK ⇒ L

)
,

and

CJ ((−), G∗L)(α) := α∗ :

(
β′ : K ′ ⇒ GL

)
7→

(
β′α : K ⇒ GL

)
,

Now for any such β ∈ DJ (F∗K
′, L), we have

ψK′L((F∗α)
∗(β)) = ψK′L(βF∗α) = G∗β(G∗F∗α)ηK .

Analogous (and identical after replacing GL with K ′) to commutativity of the first diagram in (2), naturality
of η gives us (G∗F∗α)ηK = ηK′α. Therefore,

ψK′L((F∗α)
∗(β)) = G∗βηK′α .

Additionally,
α∗(ψKL(β)) = α∗(G∗βηK′) = G∗βηK′α .
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That is, we have commutativity of the naturality diagram for the variable K:

DJ (FK ′, L) CJ (K ′, GL)

DJ (FK,L) CJ (K,GL)

ψK′L

(F∗α)
∗

ψKL

α∗

Similarly, for fixed K ∈ CJ , β : F∗K ⇒ L, and γ : L⇒ L′, we have

ψKL′(γ∗(β)) = ψKL′(γβ) = G∗γG∗βηK

and
(G∗γ)∗ψKL(β) = G∗γG∗βηK ,

so the diagram for naturality in L also commutes:

DJ (FK,L) CJ (K,GL)

DJ (FK,L′) CJ (K,GL′)

ψKL

γ∗ (G∗γ)∗

ψKL′

In hindsight, an easier way to prove all of this would have been from the following ansatz for unit and counit,
respectfully:

η̃ := (ηK)K : idCJ ⇒ G∗F∗ , ε̃ := (εL)L : F∗G∗ ⇒ idDJ .

Nevertheless, we arrive at the initially sought-after statement (and a little extra):

Corollary 1. For all C ∈ C and functors K : J → D, there is an iso

Cone(F∆C,K) ∼= Cone(∆C,GK) .

Furthermore, the collection of such isos is natural in the variables C and K.

Proof. The existence of such an iso follows directly from the identification:

Cone(F∆C,K) := DJ (F∆C,K) , Cone(∆C,GK) := CJ (∆C,GK) .

We then know, from Observation 2 that our previously constructed ψ∆CK gives the desired isomorphism.
Furthermore, Proposition 1 gives naturality in the variables ∆C,K and this pulls back to naturality in C
by functoriality of ∆ : C → CJ . In particular a morphism f : C → C ′ in C induces a natural transformation
∆f : ∆C ⇒ ∆C ′ over which this collection of isos is natural.

Solution 2

1. Given terminal objects T and T ′ in C, we necessarily have unique isomorphisms t : T → T ′ and
t′ : T ′ → T . Now considering some f : C → T , we can compose t′tf : C → T and then by uniqueness
of the morphisms C → T , we have t′tf = f . The same argument yields tt′g = g for g : C → T ′. We
can then choose f = idT , g = idT ′ and we see

t′t = t′tidT = idT , tt′ = tt′idT ′ = idT ′ .
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2. By our second definition of limit cone (as terminal objects in
∫
C Cone(−, F )), the result is clear. If

α : ∆L⇒ F and α′ : ∆L′ ⇒ F are two limit cones, then (L,α) and (L′, α) are both terminal objects
in

∫
C Cone(−, F ) admitting an iso i : (L,α) → (L′, α′) in

∫
C Cone(−, F ). Recall that i is necessarily

a morphism L → L′ in C such that Cone(−, F )i = ∆i = i (viewed as a natural transformation
∆L ⇒ ∆L′) satisfies α′i = α. The important part here is that i is an iso, so i−1i = id(L,α) = idL by
definition and similarily ii−1 = id(L′,α′) = idL′ . In other words, isomorphisms in category of elements
always descends to an isomorphism in the original category.

Solution 3

Consider the cone ε : ∆FI ⇒ F where εj = Fej , the image of the unique ej : I → j in J . This is indeed a
cone because for all f : j → j′ in J , we of course have commutativity of

(∆FI)j = FI Fj

(∆FI)j′ = FI Fj′

εj=Fej

(∆FI)f=idFI Ff

εj′=Fej′

,

because FfFej = F (fej) = Fej′ by uniqueness of the map I → j′. We will now show that ε : ∆FI ⇒ F is
the limit cone. For all other cones α : ∆C ⇒ F , let us define πα := αI . Observe that for all f : j → j′ in J ,
our previous result FfFej = Fej′ , along with naturality of α implies commutativity of

∆C

FI Fj′

Fj

αI

αj′

αj

Fej′

Fej
Ff

,

which, by f : j → j′ chosen arbitrarily, gives commutativity of

∆C

∆FI F

πα:=αI
α

ε

.

We have thus shown the existence of a morphism πα : (C,α) → (FI, ε) in
∫
C Cone(−, F ) for all (C,α). It

remains to show uniqueness to declare that (FI, ε) is terminal in
∫
C Cone(−, F ) and therefore, ε : ∆FI ⇒ F

is the limit cone (by imposing the solution to the previous problem). Consider some morphism f : C → FI
(which trivially induces f : ∆C ⇒ ∆FI) such that

∆C

∆FI F

f α

ε

,

commutes. Then in particular, we have commutativity of

C

FI FI

f
αI

εI=Fei=F idI=idFI

,

which decisively settles uniqueness.
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Solution 4

1. Cones (cocones) over (under) these diagrams are collections of morphisms in the poset. Therefore,
there is a cone over F with summit P if and only if P ≤ Fj for all j ∈ J , and there is a cocone under
F with nadir P if and only if Fj ≤ P for all j ∈ J . It is then clear that the limit of F is the infimum
of imF and the colimit of F is the supremum of imF .

2. We will first prove that for an arbitrary finite number n, the product of V1, ..., Vn is simply the direct
product V1 ⊕ ...⊕ Vn. Recall that we have projection and inclusion maps

πj : v1 + ...+ vn 7−→ vj ,

ij : vj 7−→ 0V1
+ ...+ 0Vj−1

+ vj + 0Vj+1
+ ...+ 0Vn

,

whenever v1 ∈ V1, ..., vn ∈ Vn, i.e., v1 + ...+ vn ∈ V1 ⊕ ...⊕ Vn. A crucial fact is that πj ij = idVj
for all

j and πj ik = 0kj : Vk → 0Vj
for all j ̸= k. Now for any cone (fi :W → Vi)i, we can define

f :W −→ V1 ⊕ ...⊕ Vn
w 7−→ i1f1(w) + ...+ infn(w) ,

(for which linearity is clear) and we see

πjf(w) = πj ijfj(w) = idVj
fj(w) (3)

for all j. Further, if there was another f ′ :W → V1⊕ ...⊕Vn satisfying (3) for all j then we would have
f = f ′. This is because for all v ∈ V1 ⊕ ... ⊕ Vn, this vector is fully characterized by its image under
the projection maps (πj)j implying that for all w ∈W , f(w) and f ′(w) are fully characterized by their
images under the projection maps (πj)j which are necessarily equal by assumption. Then imposing
the universal property yields the result.

Next, we will prove that V1 ⊕ ...⊕ Vn is also the coproduct of V1, ..., Vn. Observe that for any cocone
(gi : Vi →W )i, we can define

g : V1 ⊕ ...⊕ Vn −→W

v 7−→ g1π1(v) + ...+ gnπn(v) ,

(again, linearity is clear) and we see that for all vj ∈ Vj ,

gij(vj) = g1π1ij(vj) + ...+ gjπj ij(vj) + ...+ gnπnij(vj)

= g1(0V1) + ...+ gj(vj) + ...+ gn(0Vn)

= 0W + ...+ gj(vj) + ...+ 0W

= gj(vj)

Now uniqueness of a map satisfying this property, gijvj = gjvj for all vj ∈ Vj , is clear because if we
had another such map g′, we could evaluate it on arbitrary v = v1 + ...+ vn ∈ V1 ⊕ ...⊕ Vn and obtain
(by linearity of g and g′)

g′(v) =
∑
j

g′ij(vj) =
∑
j

gj(vj) =
∑
j

gij(vj) = g(v)

Again, the corresponding universal property will yield the result.
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We remark that these general n cases recover the original statement of investigation: “Prove that in
the category Vect, both the product and the coproduct of two vector spaces V1, V2 are given by their
direct sum.” Now turning to the case of infinite products and coproducts, we see that this truth is
not retained. For a counterexample consider {k[xj ]}j∈N as our basic vector spaces. If ⊕jk[xj ] was our
product, then we would have a map f : k[[x]] → ⊕jk[xj ] (where k[[x]] vector space of formal power
series over k) such that for all v ∈ k[[x]] and j ∈ N, πjf(v) = π̃j(v) (where πj , π̃j are the projections
⊕kk[xk] → k[xj ], k[[x]] → k[xj ], respectfully). However, this cannot be the case because we can
consider v =

∑
j x

j . Necessarily, f :
∑
j x

j 7→
∑
j ij(x

j) (where ij is the inclusion k[xj ] ↪→ ⊕kk[xk])
which is an infinite sum and thus, not actually an element of ⊕kk[xk].

Solution 5

1. Let us use Z to denote the pushout of the given diagram with colimit cocone ζ, and Z ′ to denote the
coproduct of X and Y with colimit cocone ζ ′. Further, for C ∈ C we will use iC do denote the unique

morphism I → C. Note that we can treat ζ ′ as a cocone under X
iX←− I iY−→ Y by adding an extra leg

ζ ′I := iZ′ . To see this, observe that the diagram

I Y

X Z ′

iY

iX
ζ′I

ζ′Y

ζ′X

will necessarily commute by uniqueness of the morphism I → Z ′. Therefore, by the fact that Z is the
pushout, we have a unique morphism f : Z → Z ′ such that

I Y

X Z

Z ′

iY

iX
ζI

ζY
ζ′Y

ζX

ζ′X

f

(4)

commutes. Similarly we can treat ζ as a cocone under the discrete diagram X Y (after discarding
ζI) and this admits a unique morphism g : Z ′ → Z such that the diagram

Y

X Z ′

Z

ζ′Y
ζY

ζ′X

ζX

g

(5)
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commutes. Combining the diagrams in (4) and (5) yields commutativity of both diagrams below.

Y

X Z ′

Z

Z ′

ζ′Y
ζY

ζ′Y
ζ′X

ζX

ζ′X

g

f

I Y

X Z

Z ′

Z

iY

iX
ζI

ζY
ζ′Y

ζY
ζX

ζ′X

ζX

f

g

Note that the diagram on the right carries the additional information that fζI = iZ′ = ζ ′I and
gfζI = iZ = ζI and each “layer” (if you will) of both diagrams is a cocone. We then impose the
universal property for the respective colimits (coproduct for left, pushout for right) stating that fg
and gf are the unique morphisms making the relevant legs commute. Thus, fg = idZ′ , gf = idZ , and
we have Z ∼= Z ′.

2. We will proceed a bit different than before. Instead of giving an isomorphism between the two objects,
we will show that a pullback satisfies the universal property for the equalizer and vice-versa. Note that
any cone over the first diagram is necessarily a cone over the second diagram and vice-versa.To see
this, observe that we have equivalence of the commutativity of the diagrams below.

A X

0 Y

αX

α0=0
αY f ⇐⇒

A X

Y

αX

0
f ⇐⇒ A X Y

αX
f

0
(6)

This equivalence is given by the uniqueness of maps that factor through the zero object, in particular,
(0αX : A → X → 0 → Y ) = (0 : A → 0 → Y ). We can also insert a second cone (ζ with summit Z)
and an arbitrary morphism aα : A→ Z into the picture to get a stronger equivalence of commutativity:

A

Z X

0 Y

aα

αX

α0

ζX

ζ0=0
ζY

f

⇐⇒

A

Z X

Y

aα

αX

ζX

0
f

⇐⇒ A Z X Y
aα

αX

ζX f

0
(7)

Now the result will follow effortlessly. Let Z be the pushout of the first diagram and ζ its limit cone.
To prove that it is the equalizer of the second diagram consider a cone

A X Y
αX

f

0
.

By (6), we know that this induces a cone over the first diagram admitting (by universal property for
the pullback Z) the unique map aα making the first diagram in (7) commute. Then following the
equivalence of (7) to the right we get commutativity of the rightmost diagram, that is we get existence
of a map (in this case aα) making the rightmost diagram commute. For uniqueness, suppose we had
two such maps aα, a

′
α making the rightmost diagram of (7) commute. Then following (7) leftward, we

get that these maps both force the leftmost diagram in (7) to commute and then by universal property
for the pullback, Z, we have that the two maps are equal. Thus, Z is also an equalizer of the second
diagram.
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Analogously, we can prove that the equalizer of the second diagram is a pullback of the first. Let Z be
the equalizer of the second diagram and ζ its limit cone. To prove that it is the pullback of the first
diagram consider a cone

A X

0 Y

αX

α0=0
αY f .

By (6), we know that this induces a cone over the second diagram admitting (by universal property for
the equalizer Z) the unique map aα making the second diagram in (7) commute. Then following the
equivalence of (7) to the left we get commutativity of the leftmost diagram, that is we get existence
of a map (in this case aα) making the leftmost diagram commute. For uniqueness, suppose we had
two such maps aα, a

′
α making the leftmost diagram of (7) commute. Then following (7) rightward,

we get that these maps both force the rightmost diagram in (7) to commute and then by universal
property for the equalizer, Z, we have that the two maps are equal. Thus, Z is also a pullback of the
first diagram.

Solution 6

Suppose f is a monomorphism and consider arbitrary a, a′ : A → P which we can extend to unique cones

α, α′ over the diagram Y
g−→ Z

f←− X by the assumption that P is the pullback:

A

P X

Y Z

a

αX=pa

αY =qa

p

q f

g

A

P X

Y Z

a′

α′
X=pa′

α′
Y =qa′

p

q f

g

Now to show that q is mono, let us assume that qa = qa′, i.e., αY = α′
Y . If this is the case, then obviously

αZ = gqa = gqa′ = α′
Z , but more interestingly,

fpa = gqa = gqa′ = fpa′ ,

so by f mono, we have pa = pa′ and thus, αX = α′
X . Therefore, our two cones α, α′ are equal and by the

universal property of the pushout P , we necessarily have a = a′.

For a counterexample of the converse, Let us consider one of the most simple example possible in the category
Set:

X = {x1, x2, x3} , Y = {y1, y2} , Z = {z1, z2} .

f :

x1 z1 y1

x2 z2 y2

x3

: g

In Set, the pullback is the fiber product

P = X ×Z Y := {(x, y) ∈ X × Y | f(x) = g(y)} = {(x1, y1), (x1, y2)} ,
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and the (nontrivial) legs of the limit cone are the projection maps p = πX and q = πY . It is then clear to
see that f is not mono (injective in Set) yet q is. It remains to prove that the fiber product is indeed the

pullback in Set. To see this, let’s again choose Y
g−→ Z

f←− X to be arbitrary in Set and consider some
cone α over this diagram with summit A. Then necessarily, gαY (a) = fαX(a) = αZ(a) for all a ∈ A and we
can construct hα : A → X ×Z Y (fiber product) by hα : a 7→ (αX(a), αY (a)) making the following diagram
commute:

A

X ×Z Y X

Y Z

hα

αX

αY

πX

πY f

g

Uniqueness of such an hα is clear because if we had h′α also making the above diagram commute, then
h′α(a) = (x, y) such that αX(a) = πX(x, y) = x and αY (a) = πY (x, y) = y.

The dual statement to the one above is the following:

“In a pushout square

P X

Y Z

p

q

g

f

if f is an epimorphism then so is q.”

Solution 7

Before we do anything, let’s put some names to these morphisms (r for right, d for down, subscript for
codomain):

X Y Z

X ′ Y ′ Z ′

rY

dX′

⌜

rZ

dY ′ dZ′

rY ′ rZ′

Note that when a morphism is not specified, it is assumed to be the one in the diagram above with the
corresponding domain and codomain.

( =⇒ )

Now suppose the right-hand square is a pushout. Then given a cocone α with nadir A underX ′ dX′←− X rZrY−→ Z,
we can first extend this to a cocone under

X Y Z

X ′

rY

dX′

rZ

by simply adding a leg αY := αZrZ . Then we can restrict this enhanced cocone to the cocone (αX′ , αX , αY )
and, by the assumption that Y ′ is a pushout in this left-handed square, there exists a unique αY ′ inducing
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commutativity of

X Y

X ′ Y ′

A

αY

αX′

αY ′

Recalling that αY := αZrZ , we can extend this commutativity to that of

X Y Z

X ′ Y ′

A

αY

αZ

αX′

αY ′

Restricting once again, this time to the cocone (αY ′ , αY , αZ), and imposing the universal property of Z ′

gives us a unique morphism αZ′ inducing commutativity of the below left diagram which, in combination
with the commutativity of the previous diagram, implies that for the below right diagram.

Y Z

Y ′ Z ′

A

αZ

αY ′

αZ′

X Z

X ′ Z ′

A

αZ

αX′

αZ′

To clarify uniqueness of such an αZ′ , let us recall the uniqueness in each step:

α = (αX′ , αX , αZ)⇝ unique (αX′ , αX , αY )⇝ unique αY ′ ⇝ unique (αY ′ , αY , αZ)⇝ unique αZ′ .

Therefore, Z ′ satisfies the universal property for the pushout in the composite square.

(⇐= )

Suppose that the composite square is a pushout and consider an arbitrary cocone α with nadir A under
Y ′ ←− Y −→ Z. Then we can uniquely extend α to the following cocone:

X Y Z

X ′ Y ′

A

αY

αZ

αX′ :=αY ′rY ′

αY ′

(8)

Now, this extended cocone restricts uniquely1 to the cocone (αX′ , αX , αZ) for which there is a unique
αZ′ inducing commutativity of the below left diagram (by the assumption that the composite square is a
pushout). From this, we observe that the composite square factors uniquely through the left-hand square

1All restrictions are unique and this holds not just for cones, but for pretty much any mathematical object by definition.
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(by our pushout assumption on the left hand square) giving commutativity of the below middle diagram.
Finally, this yields commutativity of the below right diagram.

X Z

X ′ Z ′

A

αZ

αX′

αZ′

X Y Z

X ′ Y ′ Z ′

A

αZ

αX′

αZ′

Y Z

Y ′ Z ′

A

αZ

αZ′rZ′

αZ′

(9)

We must now check that αZ′rZ′ = αY . This is true because the commutativity of the above middle diagram
and that of the diagram in (8) restricts to commutativity of the below left and below right diagrams,
respectively.

X Y

X ′ Y ′

A

αZ

αX′

αZ′rZ′

X Y

X ′ Y ′

A

αZ

αX′

αY ′

Therefore, by universal property of the pushout Y ′, we have αZ′rZ′ = αY ′ . Just is we did in the proof of the
right implication, we will clarify that uniqueness was maintained throughout this construction to conclude
that Z ′ satisfies the universal property of the pushout in the right-hand diagram:

α = (αY ′ , αY , αZ)⇝ unique (αX′ , αX , αY ′ , αY , αZ)⇝ unique (αX′ , αX , αZ)⇝ unique αZ′ .

Solution 8

Let’s begin by recalling what a cone with summit (or cocone with nadir) G over (under) F : J → CA would
look like. This is a collection of morphisms in CA, i.e., natural transformations, γ := (γj : G ⇒ Fj)j∈J (or
( γj : Fj ⇒ G)j∈J) satisfying the “pairwise commutativity” property that for all r : i→ j in J , the following
diagram

Fi

G

Fj

Fr

γi

γj

, or

Fi

G

Fj

Fr

γi

γj

commutes. In particular this is equivalent to the requirement for all r : i→ j, and A ∈ A, the diagram

FiA

GA

FjA

FrA

γi
A

γj
A

, or

FiA

GA

FjA

FrA

γiA

γjA

(10)
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commutes (in C). This equivalence holds because the composition of natural transformations (ηA)A : T ⇒ T ′

and (η′A)A : T ′ ⇒ T ′′ is given, object-wise, by (η′AηA)A. An important observation is that γ (or γ) restricts

to the collection γA := (γjA)j (or γA := ( γjA)j) which will then form a cone (or cocone) over (or under) evAF
for all fixed A. This is because a remark to the above formulation of γ as a cone tells us that for all r : i→ j
and fixed A, we still have commutativity of Diagram (10). We will call γA (or γA) the A-slice of the ambient
cone γ = ((γjA)A)j (or ambient cocone γ = (( γjA)A)j).

Now suppose that the limits of the diagrams

J
F−→ CA evA−−→ C

exist in C for all A ∈ A. Let us denote these limits by lim evAF and their limit cones as αA := (αjA)j∈J for

each A ∈ A. This implies that all sliced cones (γjA)j will factor uniquely through lim evAF as described by
the commutative diagram below.

evAF

GA lim evAF
hγA

γA

αA (11)

Now the above diagram lives in C and we would like to get the analogous factoring result for the ambient
cone γ in CA. For this, let us define the functor

lim ev(−)F : A −→ C
A 7−→ lim evAF

(f : A→ A′) 7−→ fα

where fα is the unique morphism lim evAF → lim evA′F inducing commutativity of the following diagram
for all r : i→ j in J :

FiA FiA′

lim evAF lim evA′F

FjA FjA′

Fif

FrA′

αi
A

αj
A

αi
A′

αj

A′

Fjf

Note that existence and uniqueness of fα is given by the fact that ((Fjf)αjA)j is a cone over evA′F , so
it factors uniquely through lim evA′F . Aside: There is a more elegant way of defining fα by the unique
morphism in C inducing commutativity of

evAF evA′F

∆J lim evAF ∆J lim evA′F

F (−)f

αA

αA′
(12)

where ∆JC : J → C by sending all objects to C and all morphisms to idC , and F (−)f := (Fjf)j∈J (yes, we
should denote F (−)f as ev(−)F which is a functor that is basically the same as F and whose limit, wrt the J
slot, is the functor lim ev(−)F , but let’s keep it simple and pretend that their is no higher magic happening
here). The fact that lim ev(−)F maps identities to identities is clear and composition preservation is also
clear by concatenating the diagram above. Therefore, lim ev(−)F is indeed a functor.

We will now work to prove that lim ev(−)F = limF with limit cone α := ((αjA)A)j : ∆J lim ev(−)F ⇒ F .
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Claim: The collection hγ := (hγA)A, where hγA is the unique morphism inducing commutativity in (11), is
a natural transformation G⇒ lim ev(−)F . This is because for every f : A→ A′ in A, the commutativity of
Diagram (11) in combination with that of Diagram (12) gives commutativity of the diagram below

evAF

GA lim evAF

lim evA′F

evA′F

F (−)f

γA

hγA

fα

αA

αA′

which, when combined with the A′ version of Diagram (11), yields commutativity of the following:

GA

GA′ lim evA′F

evA′F

Gf

γA′

hγ
A′ αA′

Now because γ is a cone with summit G, it is pretty clear that γA′Gf = F (−)fγA. Therefore, we have
two equal cones with summit GA over evA′F , thus they must factor through lim evA′F uniquely, i.e., the
diagram below must commute.

GA lim evA

GA′ lim evA′

hγA

Gf fα
hγ′

A

Next we can observe that hγ induces commutativity of

F

∆JG ∆J lim ev(−)F
hγ

γ

α

because as explained in the beginning of the problem, it is sufficient to show that the restriction to Dia-
gram (11) commutes for all choices of A. We conclude with the observation that hγ is the unique natural
transformation G ⇒ lim ev(−)F inducing commutativity of the above diagram because any such morphism
would necessarily induce commutativity of the restricted (or “sliced”) diagram (11)—where we have unique-
ness—for all A. This concludes the proof that the functor lim ev(−)F is the limit limF . Finally, we remark
that all our hard work as also proven the dual statement: “if the colimits of the diagram evAF exist in C for
all A ∈ A, then we can construct colimF .” The proof of this dual statement is simply the dual of the proof
above.
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